57 research outputs found

    Performances of rainfall energy harvester

    Get PDF
    In this paper the performances of rainfall energy harvesting by means of piezoelectric transducers is presented. Diverse studies agree on the level of suitable generated voltage on the electrodes of a piezoelectric transducer subjected to rainfall, but a complete characterization on the supplied power is still missing. This work, in order to limit optimistic forecasts, takes into account the behavior of the transducers subjected to real and also artificial rainfall, condition that has shown promising behavior in laboratory. In order to increase the energy harvesting and also define its limits different loads have been taken into account. Only commercial transducers have been considered: a lead zirconate titanate and polyvinylidene difluoride transducer

    Piezoelectric model of rainfall energy harvester

    Get PDF
    In this paper a model to predict the harvest of the energy contained in rainfall by means of piezoelectric transducers is presented. Different studies agree on the level of suitable generated voltage on the electrodes of a piezoelectric transducer subjected to rainfall, but a complete characterization on the supplied power is still missing. This work, in order to limit optimistic forecasts, compares the behavior of the transducers subjected to real and artificial rainfall, a condition that has shown promising behavior in laboratory

    Assisted software design of a wide variety of windings in rotating electrical machinery

    Get PDF
    In this paper a software developed by the Authors for winding design is presented. In particular, this software can be used as a valid aid in design and analysis for a wide variety of windings with generic number of phases, pole pairs, slot number, etc‥ The calculation of winding factors and the evaluation of their harmonic distribution is also accomplished. The software is implemented in MATLAB® environment. By means of some examples, covering the most relevant winding types, the capabilities of this software will be shown. Particularly, integer and fractional slot, single and double layer winding, concentrated windings, imbrication, belt widening and belt shifting techniques can be treated in order to reduce particular harmonics in the electromotive force (e.m.f) or in the magnetic field (m.m.f.=magneto motive force). Thanks to this software it is possible to determine quickly the winding connections. Moreover, the winding factor harmonic distribution, the THD of e.m.f., the differential leakage and the spatial distribution of the m.m.f. is computed in a very easy way

    PV reconfiguration systems: A technical and economic study

    Get PDF
    Dynamical electrical array reconfiguration strategies for grid-connected PV systems have been proposed as solution to improve energy production due to the mismatch effect of PV plants during partial shading conditions. Strategies are based on the use of dynamic connections between PV panels given by the employment of switches that allow for each panel the series, parallel or exclusion connections, physically changing the electrical connections between the related PV modules, consequentially modifying the layout of the plant. Usually the cost of the dynamic matrix is not taken into account. This novel work evaluates the economic advantages obtained by the use of reconfiguration strategies in PV systems, by taking into consideration the price of energy due to incentives in different European and non-European countries and correlates it with the employment of two types of reconfigurators, with different internal structures. For each of the incentives proposed by the different Countries, the main strength and weakness points of the possible investment are highlighted and critically analyzed. From this analysis, it can be stated that the adoption of reconfiguration systems, in certain cases, can be a very convenient solution

    Battery models for battery powered applications: A comparative study

    Get PDF
    Battery models have gained great importance in recent years, thanks to the increasingly massive penetration of electric vehicles in the transport market. Accurate battery models are needed to evaluate battery performances and design an efficient battery management system. Different modeling approaches are available in literature, each one with its own advantages and disadvantages. In general, more complex models give accurate results, at the cost of higher computational efforts and time-consuming and costly laboratory testing for parametrization. For these reasons, for early stage evaluation and design of battery management systems, models with simple parameter identification procedures are the most appropriate and feasible solutions. In this article, three different battery modeling approaches are considered, and their parameters' identification are described. Two of the chosen models require no laboratory tests for parametrization, and most of the information are derived from the manufacturer's datasheet, while the last battery model requires some laboratory assessments. The models are then validated at steady state, comparing the simulation results with the datasheet discharge curves, and in transient operation, comparing the simulation results with experimental results. The three modeling and parametrization approaches are systematically applied to the LG 18650HG2 lithium-ion cell, and results are presented, compared and discussed

    Battery Models for Battery Powered Applications: A Comparative Study

    Get PDF
    Battery models have gained great importance in recent years, thanks to the increasingly massive penetration of electric vehicles in the transport market. Accurate battery models are needed to evaluate battery performances and design an efficient battery management system. Different modeling approaches are available in literature, each one with its own advantages and disadvantages. In general, more complex models give accurate results, at the cost of higher computational efforts and time-consuming and costly laboratory testing for parametrization. For these reasons, for early stage evaluation and design of battery management systems, models with simple parameter identification procedures are the most appropriate and feasible solutions. In this article, three different battery modeling approaches are considered, and their parameters’ identification are described. Two of the chosen models require no laboratory tests for parametrization, and most of the information are derived from the manufacturer’s datasheet, while the last battery model requires some laboratory assessments. The models are then validated at steady state, comparing the simulation results with the datasheet discharge curves, and in transient operation, comparing the simulation results with experimental results. The three modeling and parametrization approaches are systematically applied to the LG 18650HG2 lithium-ion cell, and results are presented, compared and discussed. Document type: Articl

    ADC Based Measurements:a Common Basis for the Uncertainty Estimation

    No full text
    In the last years, many Authors have dealt with the uncertainty evaluation of the measurement performed by using an analog-to-digital converter, proposing different approaches to analyze the uncertainty propagation. However, in these studies, in order to identify the uncertainty sources, different sets of parameters are used, and, often, it is not considered that the various uncertainty sources have different modalities of propagation. Obviously, this implies that the various proposed approaches are not directly comparable. One of the main reasons which has caused this situation is the coexistent of various Standards concerning the characterization of the analog-to-digital converters. Therefore, the manufacturers of converters have got a large arbitrariness in choosing and measuring the parameters which specify the performances of their products. With the aim to overtake these limitations and to suggest a common basis, in this paper, we identify, among the large number of parameters proposed by the various Standards, a minimum set of figures of merit which allows a correct uncertainty evaluation of a generic measurement performed by using an analog-to-digital converter. In order to verify the effectiveness of the proposed approach we applied the method to real measurements and compared the results with the ones obtained by means of experimental tests
    • …
    corecore